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Motivation

• Main Motivation - Natural Language Processing (NLP) and Information Retrieval (IR). 

• NLP essentially means enabling computers to derive meaning from human-input or 
machine-input natural languages like English, Hindi, Mandarin  

• Some standard NLP tasks are tokenization, classification and clustering of textual 
documents, speech recognition, machine translation, auto-summarization of 
documents, language generation, chat-bots, etc. 

• A retrieval system is basically a search engine e.g. Google, Bing. 

• The most popular approach to NLP and IR is statistical machine learning, e.g. 
supervised where a model is trained on data labeled for the task to make predictions on 
un-labeled data or unsupervised where no labeled data is available  

• Standard ML algorithms expect a data instance as a vector, in fact, when we say data, 
we mean a matrix (a row/vector for each data point) - csv/tsv file, excel sheet, data 
frame, numpy array etc.





Text Classification

✤ Consider a task where we have to classify news articles into 
20 different categories e.g. finance, politics, entertainment, 
sports etc.

✤ Supervised ML: Train a classifier on given labeled data 
which learns to make predictions on new, unseen 
documents. 

✤ Text Document —-> Category

✤ Need a way to vectorize the text documents. 



Traditional Approaches

• Goal: A vector representation of words in a 
document. 

• Vector Space Models: Most popular models of NLP and IR. Expect a 
word/sentence/document to be a vector. 

• One Hot Encoding (OHE): 
★Words are fundamental and indestructible. 

★ A word is represented as a point in a vector space of dimension equal to the 
size of vocabulary (# of words in the corpus) i.e. each word contributes a 
dimension to the vector. i.e the word vectors are a basis for the vector space.  

★ The entries in the vector representation of a word are all zeros except the 
one corresponding to the word under consideration.



One Hot Encoding - binary vectors

• Consider the following sentence -  

“Donald Trump called BuzzFeed a failing piece of garbage.” 
• Size of vocabulary is 9, 7 ignoring stop-words (a, of). 
• An OHE for the words will be  

★ Donald = [1,0,0,0,0,0,0] 
★ Trump = [0,1,0,0,0,0,0] 

★ called = [0,0,1,0,0,0,0] 

★ BuzzFeed = [0,0,0,1,0,0,0] 

★ failing = [0,0,0,0,1,0,0] 
★ piece = [0,0,0,0,0,1,0] 
★ garbage = [0,0,0,0,0,0,1] 



• This is not the only possibility for OHE. Any basis for the 
vector space can be an OHE. Popular approaches are 
count vectors and tf-idf vectors.  

• In count vector representation, the entry corresponding 
to each word is it’s raw frequency in the document. 

• Consider the paragraph -  

“Donald Trump called BuzzFeed a failing piece of garbage.  
Buzzfeed is apparently so pleased at being called such by 
Trump that they started selling ‘failing piece of garbage’ shirts.” 

• The size of vocab is 12, ignoring stop-words.



★ Donald = [1,0,0,0,0,0,0,0,0,0,0,0] 

★ Trump = [0,2,0,0,0,0,0,0,0,0,0,0] 

★ called = [0,0,2,0,0,0,0,0,0,0,0,0] 

★ BuzzFeed = [0,0,0,2,0,0,0,0,0,0,0,0] 

★ failing = [0,0,0,0,2,0,0,0,0,0,0,0] 

★ piece = [0,0,0,0,0,2,0,0,0,0,0,0] 

★ garbage = [0,0,0,0,0,0,2,0,0,0,0,0] 

★ apparently = [0,0,0,0,0,0,0,1,0,0,0,0] 

★ pleased = [0,0,0,0,0,0,0,0,1,0,0,0] 

★ started = [0,0,0,0,0,0,0,0,0,1,0,0] 

★ selling = [0,0,0,0,0,0,0,0,0,01,0] 

★ shirts = [0,0,0,0,0,0,0,0,0,0,01]



Vector Space Model

• Using a vector representation of words, we can build a representation of 
documents.  

• A document is represented as a point in a vector space of dimension equal 
to the size of the vocabulary i.e. again the words form the basis, and the 
contribution of each word in the vector is the OHE contribution of the word.  

• e.g. the previous document can be represented by the following vector  

basis = [Donald, Trump, called, BuzzFeed, failing, piece, garbage, 
apparently, pleased, started, selling, shirts] 

document = [1,2,2,2,2,2,2,1,1,1,1,1] 

• This way we obtain a vector representation of the text documents, which can 
be fed into a machine learning model.



• We can extend this kind of encoding to a corpus of documents, 
which is the original motivation.  

• Consider the following sentences -  

d1 = “Donald Trump called BuzzFeed a failing piece of 
garbage.” 

d2 = “ Buzzfeed is apparently so pleased at being 
called such by Trump that they started selling ‘failing 
piece of garbage’ shirts.” 

d3 = “Donald Trump is the new President-Elect of the 
US” 

d4 = “The Trump University has such a bad reputation.” 

d5 = “BuzzFeed is growing at an alarming pace.”



• The vocabulary is of size 21. Each document can be 
represented as a vector of length 21, where each word 
corresponds to a dimension.  

• In OHE, the entry corresponding to a word in a document 
vector is non-zero if the word is present in the document.  

• For binary encoding, the non-zero contribution is 1. 

★ d1 = [1,1,1,1,1,1,1,0,…,0] 

★ d2 = [0,1,1,1,1,1,1,1,1,1,1,1,0,…,0] 

★ d3 = [1,1,0,…,0,1,1,1,0,0,0,0,0,0] 

★ d4 = [0,1,0,..,0,1,1,1,0,0,0] 

★ d4 = [0,0,0,1,0,..,0,1,1,1]



tf-idf 

✤ term frequency-inverse document frequency (tf-idf) is the most popular 
approach of vectorizing documents. 

✤ The problem with raw frequency approach is that the high-frequent words 
will skew the model. 

✤ Term-frequencies can be normalised by the max frequency of a term in the 
document.

✤ tf-idf is the product of the normalised term frequency and the inverse of the 
document frequency (i.e. the fraction of documents that contain the term). 

✤ This attempts to give high weightage to the discerning words. 

✤ E.g. article about computer science and physics.    



Now we have vectors for each of the documents, we can do NLP 
and IR using machine learning e.g. cluster the documents using 

standard algorithms (e.g. k-means),  classification of documents etc. 



Text classification model

✤ Define the vocabulary i.e. all the terms that will be considered in the 
model (feature engineering). e.g. remove stop-words, or remove non-
domain words etc.

✤ Obtain a vectorization of the documents in the corpus. Each doc 
becomes a vector in a high-dimensional space, with dimension equal 
to the total length of the vocabulary.  tf-idf is a very successful 
approach.  

✤ Choose a machine learning algorithm e.g. SVM, Naive Bayes and 
Logistic regression have been proven to be very effective in different 
situations. 

✤ Speaker always starts with a tf-idf based SVM.



Limitations of OHE

• The words are treated atomic. 

• No information about the relationship between the words.  

distance(apple, banana) = 0  

• Not a good result, both apple and banana are fruits. Int fact, we so often 
use apple-banana as a phrase. 

distance(apple, banana) = distance(apple, airplane) = 0 

• Only comparison supported is equality. 

• Furthermore, such a representation results in word vector which are 
extremely sparse.



Distributed Representations

• Assumption: Words that appear in same context are semantic 
closer than the words which do not share same context. 

• A word can be represented as points in a continuous vector space where 
semantically similar words corresponds to nearby points. 

• This representation is also called word embeddings, since we are embedding 
word vectors in the distributed vector space. 

• Essentially, the weight of each word in the vector is distributed across many 
dimensions. 

• Instead of a one-to-one mapping between a word and a basis vector (dimension), 
the word contribution is spread across all the dimensions of the vector. 

• The dimensions are believed to capture the semantic properties of the words.



Distributed Reps 

• Distributed reps take the following form  

★ Friends = [0.73,0.34,0.52,0.01] 

★ Work = [0.65,0.79,0.22,0.1] 

★ And = [0.87,0.94,0.14,0.7] 

★ Play = [0.73, 0.69, 0.89, 0.4] 

★ Together = [0.87,0.79,0.22,0.09] 

• Please notice that these vectors are chosen arbitrarily, and do not show 
an actual representation. The sole is purpose is to give an example.



“Somewhat surprisingly, it was found that similarity of word 
representations goes beyond simple syntactic regularities. Using a 

word offset technique where simple algebraic operations are 
performed on the word vectors, it was shown for example that 

vector(“King”) – vector(“Man”) + vector(“Woman”) results in a 
vector that is closest to the vector representation of the word 

Queen.” 
–Mikolov et al



Examples/Applications
• Machine Translation has been shown to achieve much higher accuracy using distributed 

representations. 

• One can make following assertions : 

•  Distance(France, Germany) < Distance(France, Spain) 

•  Vector('Paris') - Vector('France') + Vector('Italy') ~ Vector(Rome) 

• Vector('king') - Vector('man') + Vector('woman') ~ Vector('queen') 

• The odd one in [staple, hammer, saw, drill] is staple. 

• Item2vec: word2vec for collaborative filtering and recommendation system. e.g one can infer: 

• Vector(David Guetta) - Vector(Avicii) + Vector(Beyonce) -> Vector(Rihanna) 

• BioVectors: Word vectors for Bioinformatics. 

• BioVectors can characterise biological sequences in terms of biochemical and biophysical 
interpretations of the underlying patterns.







Text Classification revisited

•As we have seen, word2vec gives another way to vectorize the textual documents, 
they can be employed for text classification tasks.  

• One approach is to get word vectors for each word in the document and then take an 
average of these vectors to arrive at the word2vec representation of the document.  

• There are also tools like Doc2vec which compute an embedded representation from 
documents.  

• Another approach is to concatenate the word vectors for each word to get the 
document representation.  

• After we have a vector rep, we can use SVM/Logistic regression/feed-forward neural 
network etc. to build a classification model. 

• There are pre-trained word2vec available which can be used in lieu of training a new 
model. 



✤ Word embeddings as input to a sequence model (e.g.  RNN, 
LSTM) which take a sequence of vectors as input (e.g. a 
sentence/document) as opposed to fixed-length vectors. 

✤ LSTM has been very effective in text classification problems. 
e.g. movie review sentiment classification 

✤ Convolutional Neural networks for text classification. 

✤ Language Modeling : Sequence-to-Sequence models for 
language translation, language generation ,chat bot/QA 
system etc. 

✤ Document summarization 

✤ Caption generation for an image.



Search engines

✤ Given a query, retrieve the most relevant pages. 

✤ Base of all search engines is the method to find docs most similar 
to the input query.

✤ Vectorize the query using word-embeddings and look for similar 
vectors representing pages. 

✤ Dog v/s canine, dog v/s cat. 

✤ Classification into relevant and non-relevant pages.

✤ Personalization: relevant or non-relevant for the current user.



Named Entity Recognition

✤ Locate and classify named entities in text into pre-defined categories such 
as the names of persons, organizations, locations, expressions of times, 
quantities, monetary values, percentages, etc.

Jim bought 300 shares of Acme Corp. in 2006.

[Jim](person) bought 300 shares of [Acme Corp.](org) in [2006](time)

✤ Very hard problem. Build set of labeled NEs and learn the word 
embeddings, tag new entities based on their similarity to the earlier tags. 

✤ e.g. Virat Kohli and MS Dhoni appear in the same context and would 
have similar word-embeddings.

https://en.wikipedia.org/wiki/Named_entity


Learning Distributed Representations

• Question: How do we compute such a representation ?  

• Distributed representations of words can be learned by training a model on a corpus of 
textual data 

• Thomas Mikolov et al (Google, Inc.) proposed an efficient method to learn these 
embeddings, making it feasible to learn high-quality word vectors on a huge corpus of 
data. 

• Basically, we train a Neural Network on a huge collection of textual files (e.g. wikipedia, 
google news, google books) and learn a representation of each word possible.  

• An implementation of this model, word2vec, is made public by Google. It has a few pre-
trained models which can be used directly on documents of interest without building/
training neural nets.  

• Two architectures were proposed for training word embeddings - CBOW and Skip-gram.



Neural Network Setup

• Consider our favourite sentence -  

“Donald Trump called BuzzFeed a failing piece of garbage.” 

• We choose a sliding window to quantify the context. One of the parameters 
of the neural net is the length of the sliding window. 

• In each sliding window, there is a central word which is under attention, and 
few words preceding and following the central word.  

• In the above example if we choose the length of sliding window to be 3, the 
the context of BuzzFeed, e.g. is  

[Donald, Trump, called, failing, piece, garbage] 



CBOW

• The context words form the input layer of the CBOW neural network, and each 
word is represented as a vector using one-hot schema.  

• There is one hidden layer, and one output layer. The output layer is formed by 
the central words (i.e. each element in the vocabulary). This way we learn a 
representation for each word in terms of the context words.  

• The actual ordering of the context words is irrelevant, this is called bag-of-
words assumption. 

• The training objective is to maximize the conditional probability of observing the 
actual output word (the focus word) given the input context words, with regard 
to the weights. 

• In our example, given the input [Donald, Trump, called, failing, piece, garbage], 
we want to maximize the probability of getting “Buzzfeed” as the output.



Skip gram

• The skip-gram method is completely opposite of the CBOW method. Here the 
central word is the input layer, and the context words are now at the output 
layer.  

• Again there is one hidden layer. 

• At the output layer, we now output multinomial distributions instead of just one.  

• The training objective is to minimize the summed prediction error across all 
context words in the output layer.  

• In our example, the input would be “buzzfeed”, and we hope to see [Donald, 
Trump, called, failing, piece, garbage] at the output layer. 

• CBOW is faster, but skip-gram does a better job for not-so-frequent words.





Thanks


